
Description of the time behavior of a spatially homogeneous chemical system

Two formalisms:

 The deterministic approach: it regards the time evolution as a continuous,
wholly predictable process which is governed by a set of coupled, ordinary
differential equations (the “reaction-rate equations”)

 the stochastic approach: it considers the time evolution as a kind of
random-walk process which is governed by a single differential-difference
equation (the “master equation”), but unfortunately the stochastic master
equation is often mathematically intractable.

Stochastic process



Let’s take a simple example: we want to follow the evolution of concentration of the protein B according
to time.
The number of proteins B in a bacterium at time t + dt is equal to the number of proteins B at time t, to
which is added the number of synthesized during the time dt and to which is subtracted the number of
degraded proteins during the time dt. Since the volume of the bacteria is considered constant, we can
easily translate the number of molecules into concentrations and vice versa.
If  and  are the rate of synthesis and degradation of B, the evolution of the concentration of B per unit
time is given, in a deterministic approach, by the following ordinary differential equation that will reflect
the average comportment of a cell in a population:

 𝑑[𝐵

𝑑𝑡
= 𝜅 − 𝛾[𝐵 

In a stochastic approach, the variability of the comportment of the different cells from the population
will be taken into account. Thus we will think in terms of probability and a specific differential equation
will be used named master equation.

Stochastic process



In our simple case:
 At the cell level, we will work with a probability P(n,t) to have n proteins B in a cell at time t. For

example, it will have 25% chance of having 3 proteins B in the cell, 50% chance of having 4 proteins
B and 25% chance of having 5 proteins.

 At the population level, we will have a distribution. If the size of the population is of 1000 cells, that
means that approximatively 250 cells will own 3 proteins B, 500 cells will possess 4 proteins and 250
cells will have 5 proteins.

Stochastic process

A master equation is a differential equation describing the temporal evolution of a probability
distribution. This distribution represents the probability of a system to occupy each of the sets of
discrete states according to a continuous time variable.



How to write the master equation ? 

If P(n,t) is the probability to have n proteins B in a cell at time t, the goal is to describe the evolution of
P(n,t) as a function of time  𝑑[𝑃(𝑛, 𝑡)

𝑑𝑡

Hypothesis: we know the state of the system at time t, i.e., the number of proteins B in the cell.

Question: what is the probability P(n,t+dt) to have n proteins B at time t+dt, with dt very small so that
only one synthesis or degradation reaction can occur.

Answer: three cases have to be considered
• at time t, there are n-1 proteins B and that will be the synthesis reaction that will contribute

to P(n,t+dt) for a value:  dt P(n-1,t)
• at time t, there are n+1 proteins B and that will be the degradation reaction that will

contribute to P(n,t+dt) for a value:  (n+1) dt P(n+1,t) (the degradation rate depends on the
protein number that is why the term (n+1) appears in the equation)

• at time t, there are n proteins B and this number does not change. For that, we have to
consider the probability of having n proteins at t P(n,t) from which is subtracted the
probability that a synthesis reaction occurs during the time dt ( dt P(n,t) and the probability
that a degradation event takes place during the time dt ( n dt P(n,t).

𝑃 𝑛, 𝑡 + 𝑑𝑡 = 𝜅 𝑃 𝑛 − 1, 𝑡 𝑑𝑡 + 𝛾 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 𝑑𝑡 + 𝑃 𝑛, 𝑡 − 𝜅 𝑃 𝑛, 𝑡 𝑑𝑡 − 𝛾 𝑛 𝑃 𝑛, 𝑡 𝑑𝑡

Stochastic process



𝑃 𝑛, 𝑡 + 𝑑𝑡 = 𝜅 𝑃 𝑛 − 1, 𝑡 𝑑𝑡 + 𝛾 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 𝑑𝑡 + 𝑃 𝑛, 𝑡 − 𝜅 𝑃 𝑛, 𝑡 𝑑𝑡 − 𝛾 𝑛 𝑃 𝑛, 𝑡 𝑑𝑡

From the above equation, we can deduce the derivative form that corresponds to the master
equation:

𝑃 𝑛, 𝑡 + 𝑑𝑡 − 𝑃(𝑛, 𝑡)

𝑑𝑡
=

𝑑𝑃(𝑛, 𝑡)

𝑑𝑡
= 𝜅 [𝑃 𝑛 − 1, 𝑡 − 𝑃 𝑛, 𝑡  + 𝛾[ 𝑛 + 1 𝑃 𝑛 + 1, 𝑡 − 𝑛 𝑃 𝑛, 𝑡  

Stochastic process

However, for more complex system, the master equations can no longer be analytically
integrated.

Stochastic simulations
The Gillespie stochastic simulation algorithm

The essential point of this algorithm is to create two random numbers: the first one is used to
determine how long the next reaction will take place, the second one to choose which
chemical reaction occurs



The probability of a random event happening within the time t is given by :

𝑃 𝑇 ≤ 𝑡 = 1 − 𝑒−𝜆𝑡

 is the average density of frequency of events per unit of time. 

If more than one event competing: S

S1

S2

r1

r2

There is a race between events. The fastest
event is executed first. This execution will
modify globally the state of the system.

Continuous Time Markov Chains :
It is a discrete set of states connected by transitions. Each transition is associated with a rate of an
exponential distribution. In each state transitions compete in a race condition: the fastest one
determines the new state and the time elapsed. In the new state, the race condition starts over
(memoryless property).

Stochastic simulations



A reaction Rn, for example A + B  C, can occur when a molecule of species A and a
molecule of species B collide with enough energy. The probability P(n,dt) that the
reaction Rn occurs during the infinitesimal time interval dt is proportional to the
duration of the time interval dt, the number of possible collisions hn (here the product
of the number of molecules of species A and B respectively) and kinetics (rate) cn

specific to this reaction Rn. We obtain:
P (n, dt) = hncndt

The term an = hncn is called the propensity of the reaction Rn. hn is the stochastic
hazard function and here more precisely the stochastic mass-action hazard function
Each propensity is the probability per unit time that a specific reaction occurs.

If there are M reactions then the probability per unit time that any reaction occurs is just
the sum of the propensity of each reaction.

𝑎0 =  

𝑟=1

𝑟=𝑀

𝑎𝑟

Stochastic simulations

Example: two reactions with propensities a1 and a2

respectively. The probability that reaction 1 occurs is 

given by 𝑎1 =
𝑎1

𝑎1+ 𝑎2
=

𝑎1

𝑎0



Stochastic Petri net

• Each transition gets its own local timer.
When a transition becomes enabled (enough tokens in its pre-places), the local timer is
set to an initial value computed by means of the corresponding probability distribution
(in general, this value will be different for each run of simulation). The local timer is then
decremented at a constant speed, and when the timer reaches zero, the transition is
fired. If many transitions are enabled, a race of the next firing will take place.

• Technically, various probability distributions can be chosen to determine the random values 
for the local timers. Biochemical systems are prototypes for exponentially distributed 
reactions

The firing rates of transitions will follow an exponential definition which could be
described by a single parameter .
The firing rate will be described by its own parameter  to specify its local time
behavior.
The waiting time is an exponential distributed random variable Xt [0,[ with the
probability density function:

( )
( ) ( ) , 0t m

xi tf m e
   

 

The stochastic hazard function ht defines the marking-dependent transition rate t(m) for the
transition t, i.e. ht = t(m). ht will correspond to the stochastic mass-action hazard function. It will
depend on the transition-specific stochastic rate constant and on the number of tokens present in
the preplaces of the transition t.



Stochastic Petri net

Example 1:

transition t is enabled because its input place A is marked. A firing time 1 is thus chosen for t, drawn from the 
negative exponential distribution of parameter k xA = 2k, and a clock starts to countdown from 1 to 0. When the 
clock reaches 0, transition t fires.  A new marking is obtained xA = 1, xB = 1.
After the firing, transition t is still enabled, but its rate has now become k xA = k.
Consequently, its new firing time 2 will be selected from an exponential random variable different from the one 
out of which 1 was sampled. Again, a clock is set to countdown until the new firing time is reached. At that time, 
the marking is changed to xA = 0, xB = 2, where no transitions are enabled anymore and the evolution stops.

Example 2:

Transition t is enabled as both places A and B are not empty. 
In the initial marking of the model, there are six several independent ways in which the bimolecular reaction 
can occur, each one associated to one specific selection of the pair of molecules A and B that react. Thus, the 
rate associated to transition t in the initial marking is: k  xA xB = 6k. 
After the firing, the marking is changed to xA = 2, xB = 1, xC = 1
The subsequent firing of transition t will occur at a rate that is:  k xA xB =2k. 

k is the rate constant of the reaction



 The probability per unit time of a reaction occurring is constant until a reaction occurs. 

 A constant probability per unit time implies exponential decay of the probability that a 

reaction has not occurred yet:

𝑃𝑢𝑛𝑟𝑒𝑎𝑐𝑡𝑒𝑑 = 𝑒−𝑎0(𝑡− 𝑡𝑟𝑒𝑓)

where tref is a reference time (ex: time when the last system reaction occurred)

𝑃𝑟𝑒𝑎𝑐𝑡𝑒𝑑 = 1 − 𝑒−𝑎0(𝑡− 𝑡𝑟𝑒𝑓)

 We deduce that the cumulative distribution for the probability of reaction is:

 The distribution of reaction times is therefore

𝑝 𝑡 =
𝑑𝑃𝑟𝑒𝑎𝑐𝑡𝑒𝑑

𝑑𝑡
= 𝑎0𝑒

−𝑎0(𝑡− 𝑡𝑟𝑒𝑓)

 Thus, we need to generate exponentially distributed reaction times. (It will allow to
determine the time  (after tref ) corresponding to the time when the next reaction will
take place is determined).

Stochastic simulations: selecting a random reaction time



However most random number generators are based on a uniform distribution between
0 and 1. But a uniform random number r1 could be convert into an exponentially
distributed random number as follow:

 =
1

𝑎0
ln

1

𝑟1

Stochastic simulations: selecting a random reaction time



Stochastic simulations:  Gillepsie algorithm

The system to be simulated involves:
• N molecular species {S1,. . . , SN} represented by a vector of dynamic state
X (t) = (X1 (t), ..., XN (t)) where Xi (t), is the number of molecules of the species Si in the system at
time t
• M chemical reactions {R1,. . . RM}. Each reaction Rj is characterized by its propensity
aj and a vector of state change νj = {ν1j,. . . , νNj}, where νij is the variation of the number of
molecules of the species Si due to the reaction Rj.

Step 1: Determination of the time  corresponding to the time when the next reaction will occur.
Generate an random number, r1 from an uniform distribution [0,1]. Deduce 

 =
1

𝑎0
ln

1

𝑟1

Step 2: Random choice of the reaction that occurs at time 
Generate a second random number, r2 from an uniform distribution [0,1].
The probability that the next reaction to occur is Rr is ar / a0 (a0 probability per unit time that
any reaction occurs).
Rank the probability of each reaction. Figure out in which reaction interval r2 falls.

a1/a0 a2/a0 a3/a0 … ar/a0

r2



Step 2:
a1/a0 a2/a0 a3/a0 … ar/a0

r2

the index j of the selected reaction is the smallest integer in the interval [1, M] such that: 

 

𝑘=1

𝑘=𝑗

𝑎𝑘 > 𝑟2𝑎0

Step 3: the choice of the reaction will change the number of molecules at time (t+) for the
molecular species that are concerned by the reaction. The vector X (t) = (X1 (t), ..., XN (t)) will be
updated to represent the new number of molecules of each species.
New reaction propensities must be calculated.

Stochastic simulations:  Gillepsie algorithm



1. Setup: Store initial populations and rate constants, set t = 0,
2. Calculate reaction propensities.
3. Generate two uniform random numbers, r1 and r2.
4. Calculate , the time to next reaction, using r1.
5. Determine the next reaction using r2.
6. Add  to t.
7. Update the populations based on the reaction chosen.
8. Go to step 2 until some chosen stopping criterion is reached

(exhaustion of a chemical, target simulation time reached, . . . )

Gillepsie algorithm

If we want the kind of information we can get from the master equations, many
independent runs of simulations must be performed and then average across
realizations.



Stochastic paradigm (SPN): preserves the discrete state, i. e., preserve a discrete
number of tokens on its place, but in addition associates a firing rate (waiting time)
with each transition, which are random variables defined by probability distributions.
The firing rates are typically state dependent and specified by rate functions. All
reactions, which occur in the QPN, can still occur in the SPN, but their likelihood
depends on the probability distribution of the associated firing rates. Consequently,
the system behavior is described by the same discrete space as in the QPN . Thus all
qualitative properties valid in the QPN are also valid in the SPN, and vice versa. The
underlying semantics is a Continuous-Time Markov Chain (CTMC), and stochastic
simulation generates a random walk through the CTMC.
Transitions get enabled if pre-places are sufficiently marked. Before firing of an
enabled transition t  T, a waiting time has to elapse.

Stochastic Petri net



One simulation run describes at least one path in the state space graph (Gillepsie algorithm).
It is also possible to perform multiple simulation runs and average the results of all runs.
Thus, an averaged time course will be computed. The more simulation runs are performed, the more
precise is the averaged time course. All single simulation runs will fluctuate around the averaged time
course.

Stochastic Petri net



Stochastic Petri net

In stochastic Petri net, new type of transitions (timed transitions) are available:

 Deterministic transitions : they have contrary to stochastic transitions a deterministic firing
delay which is specified by an integer constant. The delay is always relative to the time point
where the transition gets enabled.

 Scheduled transitions: they are another special case of deterministic transitions. The
deterministic firing occurs according to a schedule specifying absolute points of the simulation
time. A schedule can specify just a single time point, or equidistant time points within a given
interval, triggering the firing once or periodically. However, transitions only fire at their
scheduled time points if they are enabled. Scheduled transitions can dramatically restrict the
(qualitative) net behavior. Scheduled transitions can be replaced by net components consisting
of immediate and deterministic transitions only; Thus, they do not extend the modelling
power.

 Immediate transitions: they  are a very special kind of deterministic transitions with zero firing 
delay, i.e. they fire immediately after getting enabled, and always prior to (general) 
deterministic and stochastic transitions. Consequently, getting enabled and the firing itself 
coincide for immediate transitions

Scheduled transitions are described by [Start, Repetition, End]. They fire as soon as the fixed time
interval elapsed during the given time-points.



Stochastic Petri net

Summary


