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SUMMARY

Human hematopoiesis involves cellular differentiation
of multipotent cells into progressively more lineage-
restricted states. While the chromatin accessibility
landscape of this process has been explored in
defined populations, single-cell regulatory variation
hasbeenhiddenbyensembleaveraging.Wecollected
single-cell chromatin accessibility profiles across 10
populations of immunophenotypically defined human
hematopoietic cell types and constructed a chromatin
accessibility landscape of human hematopoiesis to
characterize differentiation trajectories. We find varia-
tion consistent with lineage bias toward different
developmental branches in multipotent cell types.
We observe heterogeneity within common myeloid
progenitors (CMPs) and granulocyte-macrophage
progenitors (GMPs)anddevelopastrategy topartition
GMPs along their differentiation trajectory. Further-
more, we integrated single-cell RNA sequencing
(scRNA-seq) data to associate transcription factors
to chromatin accessibility changes and regulatory ele-
ments to target genes through correlations of expres-
sion and regulatory element accessibility. Overall, this
work provides a framework for integrative exploration
of complex regulatory dynamics in a primary human
tissue at single-cell resolution.

INTRODUCTION

In 1957, ConradWaddington developed an influential analogy for

developmental cell biology by conceptualizing cellular differenti-
ation as a ball rolling down a bifurcating three-dimensional

surface (Goldberg et al., 2007;Waddington, 1957). This develop-

mental landscape defines a descriptive path a cell might follow,

choosing different developmental fates as it reaches saddle

points that separate different, increasingly restricted, cellular

states. The shape of this landscape is largely defined by tran-

scription factors (‘‘guy-wires’’), which recruit chromatin effectors

to reconfigure chromatin (Calo and Wysocka, 2013; Long et al.,

2016) and promote new cellular phenotypes (Graf and Enver,

2009; Takahashi and Yamanaka, 2006). These concepts—the

first a descriptive notion of development (Figure S1A), and the

second a mechanistic description of the molecular actors that

drive state changes (Figure S1B)—have provided a conceptual

framework for understanding cell fate choices. Recent techno-

logical advances in single-cell epigenomic assays (Kelsey

et al., 2017) now provide the opportunity to ascribe epigenomic

features to this landscape by quantifying overall epigenomic

similarity of individual cells during a normal differentiation pro-

cess, as well as the activity of master regulators that influence

cell fate decisions.

Hematopoietic differentiation serves as an ideal model for

exploring the nature of multipotent cell fate decisions (Laurenti

and Göttgens, 2018; Orkin and Zon, 2008). The hematopoietic

system is maintained by the activity of a small number of self-

renewing, long-lived hematopoietic stem cells (HSCs) capable

of giving rise to the majority of blood cell lineages (Becker et al.,

1963; Laurenti andGöttgens, 2018;Orkin andZon, 2008)whereby

multipotent cells transit multiple decision points while becoming

increasingly lineage-restricted (Figure 1A). The human hemato-

poietic system is an extensively characterized adult stem cell

hierarchy with diverse cell types capable of phenotypic isolation

with multi-parameter fluorescence activated cell sorting (FACS)

(Corces et al., 2016; Laurenti and Göttgens, 2018). This capacity

for phenotypic isolation has enabled measurement of the
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mailto:jbuen@broadinstitute.org
mailto:wjg@stanford.edu
https://doi.org/10.1016/j.cell.2018.03.074
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cell.2018.03.074&domain=pdf


TCF4

A

HSC

MPP

pDC

CMP

MEPGMP

LMPP

Monocyte, mDC
Granulocytes

Ery,
Mega

D
iff

er
en

tia
tio

n

C
D

34
+  H

S
P

C
s

0 10
3

10
4

10
5

0
-10

2
10

2

10
3

10
4

10
5

0 10
3

10
4

10
5

0
-10

2

10
3

10
4

10
5

0 10
3

10
4

10
5

0
-10

2
10

2

10
3

10
4

10
5

0 10
3

10
4

10
5

0
-10

2
10

2

10
3

10
4

10
5

C
D

38

0

2

Fragments

CD34

CD45RA

C
D

90

CD45RA

C
D

123
C

D
10

CD45RA

CLP

Peripheral
pDC

B, T
NK cells

B

Human
Bone Marrow

C

FACS Cell capture Transpose

Single-cell ATAC-seq

PCR

D

E

F

Rank Sorted TF motifs
0 400 800 1200 1600

C
el

l-c
el

l v
ar

ia
bi

lit
y

1

2

3

4

5
GATA1

CEBPB

HOXA4
EBF1

BCL11A

IRF8
STAT1

Obs
Perm

Integrated Fluidics Circuit (IFC)

High-throughput
Sequencing

Number of fragments in peaks, log10
1 2 3 4 5

P
er

ce
nt

 o
f f

ra
gm

en
ts

 in
 p

ea
ks

20

40

60

80

100 Filter (n=1,038) Pass Filter (n=2,034)

0

1

Density

Scale
chr4:

100 kb hg19
105,950,000 106,000,000 106,050,000 TET2

CD34+ ATAC
1_

0_

CD34+ scATAC
1_

HSC (10.8%)

MPP (3.3%)

LMPP (2.1%) CMP (24.3%)
GMP
(23.0%)

MEP (7.1%)

CLP (8.2%)

pDC (15.8%)

Unknown 
(5.3%)

Freeze
& bank

HSC (N=347)

MPP (N=142)

LMPP (N=160)

CMP (N=502)

GMP (N=216)

MEP (N=138)

CLP (N=78)

pDC (N=141)

Monocyte (N=64)

Unkown (N=60)

Figure 1. Single-Cell ATAC-Seq Profiles Chromatin Accessibility within Single Hematopoietic Progenitors

(A) A schematic of human hematopoietic differentiation.

(B) Sorting strategy for CD34+ cells.

(C) Single-cell ATAC-seq workflow used in this study.

(D) Single-cell epigenomic profiles along the TET2 locus.

(E) Percent fragments in peaks by number of fragments in peaks, red lines show cutoffs used for determining which cells pass filter; points are colored by density.

(F) TF motif variability analysis in all single-cell epigenomic profiles collected for this study.

See also Figure S1 and Table S1.
epigenomic and transcriptional dynamics associated with sorted

human progenitors across differentiation providing a foundation

for the dissection of regulatory variation in normal multi-lineage

cellular differentiation (Chen et al., 2014; Corces et al., 2016; Farlik

et al., 2016; Novershtern et al., 2011). Furthermore, recent work

measuring single-cell transcriptomes has revealed significant

transcriptional heterogeneity in isolated progenitors (Notta et al.,

2016) and across differentiation (Laurenti and Göttgens, 2018;

Velten et al., 2017). These observations set the stage for single-
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cell epigenomic measurements that may define cis- and trans-

regulatory mechanisms underlying transcriptional and cell fate

commitment heterogeneity in hematopoiesis.

To define a single-cell chromatin accessibility landscape of

this developmental hierarchy, we applied a single-cell assay

for transposase-accessible chromatin by sequencing (scATAC-

seq) (Buenrostro et al., 2015b) to 10 sortable populations in

human bone marrow or blood comprising multipotent and line-

age restricted progenitors. We find that the regulatory landscape



of human hematopoiesis is continuous, with cell surfacemarkers

reflecting ‘‘basins’’ within this landscape. This single-cell anal-

ysis also uncovered substantial heterogeneity within immuno-

phenotypically defined cellular populations, including variability

within multipotent progenitors strongly correlated along the di-

mensions of hematopoietic differentiation—an observation

consistent with lineage priming at the level of chromatin acces-

sibility. We observe especially strong variability within popula-

tions of immunophenotypically defined common myeloid

progenitor (CMP) and granulocyte-macrophage progenitor

(GMP) cell types. Using ATAC-seq and RNA sequencing (RNA-

seq), we confirm that GMPs are substantially heterogeneous

on both epigenomic and transcriptomic levels and demonstrate

a strategy to enrich for sub-populations within GMPs at different

developmental stages of a myeloid differentiation trajectory.

Last, we generate scRNA-seq data and integrate these data

with scATAC-seq to associate expression changes of transcrip-

tion factors (TFs) to changes in chromatin accessibility at

cis-regulatory elements. Using these integrated data, we also

link changes at cis-regulatory elements to changes in the

expression of nearby genes. These methods for assaying and

analyzing single-cell epigenomics data provide the opportunity

for de novo discovery of cell types and states, define regulatory

variability within immunophenotypically pure populations, and

capture the cis- and trans-regulatory dynamics across a cell-

resolved regulatory landscape of differentiation.

RESULTS

Single-Cell Chromatin Accessibility of Distinct
Hematopoietic Cell Types
We used FACS to isolate 8 distinct cellular populations

from CD34+ human bone marrow, which included cell types

spanning the myeloid, erythroid, and lymphoid lineages

(Figures 1A and 1B). In addition, we also profiled a

CD34+CD38�CD45RA+CD123� subset that has not been well

characterized (Manz et al., 2002). Cells analyzed after sorting

and cells cryopreserved after sorting provided comparable

data quality and yield (Figures S1C–S1E), and therefore we per-

formed all further scATAC-seq measurements on cryopreserved

cells (Figure 1C). Together, this sorting strategy captures �97%

of all CD34+ cells (Figure S1F) and using post-sort analysis, we

found that sorted cell types were on average 97% pure by cell

surface marker immunophenotype (Corces et al., 2016). Using

this approach, we profiled the chromatin accessibility land-

scapes (CALs) across a total of 30 independent single-cell ex-

periments representing 6 human donors, with each progenitor

population assayed from two or more donors (Figure S1G). We

did not profile CD34� bone marrow stem cells, as they are rare

and less well described (Matsuoka et al., 2015).

Aggregated single-cell chromatin accessibility profiles closely

resemble bulk CD34+ ATAC-seq profiles (Figures 1D, S1H, and

S1I). Including previously published scATAC-seq data from

LMPPs and monocytes (Corces et al., 2016), this dataset

comprised 3,072 single-cell CALs across 32 integrated fluidic

circuits (IFCs). Single-cell profiles were of consistent high-quality

with 2,034 cells passing stringent quality filtering, yielding a

median of 8,268 fragments per cell with 76% of those fragments
mapping to peaks, resulting in a median of 6,442 fragments in

peaks per cell (Figure 1E; see STAR Methods).

TF Activity Inference Using ChromVAR
We applied ChromVAR to calculate TF motif-associated CAL

changes and identify potential regulators of epigenomic vari-

ability (Buenrostro et al., 2015b; Schep et al., 2017). This

approach quantifies accessibility variation across single-cells

by aggregating accessible regions containing a specific TFmotif,

then compares the observed accessibility of all peaks containing

a TF motif to a background set of peaks normalizing for known

technical confounders. ChromVAR identifies high-variance TF

motifs across CALs representing knownmaster regulators of he-

matopoiesis such as GATA1, BATF, and CEBPB (Figure 1F).

Notably, TFs of the same family often share a similar motif and

thus are difficult to disambiguate, therefore TFmotifs highlighted

throughout the text are representative TF motifs that may

encompass the individual activities of multiple expressed TFs.

Hierarchical clustering of single-cell profiles using TF Z scores

generally classifies single-cells by their immunophenotypically

defined cell type identity (Figure 2A). Interestingly, despite the

overall high quality of the HSC profiles (Figures S1J–S1L),

HSCs exhibit low TF Z scores for lineage specifying TF motifs.

Furthermore, the HOX TFmotif was most enriched in HSCs, pre-

viously shown to regulate stem cell activity (Lawrence et al.,

1997; Magnusson et al., 2007), however, this TF motif also ex-

hibited relatively low-level activity compared to lineage defining

TFs in more-differentiated cells. Low level expression of lineage

specifying TFs in other multipotent cell systems has been

described (Grün et al., 2016) and is hypothesized to generally

promote multipotency (Graf and Enver, 2009), which may also

explain the low level TF Z scores in this analysis of HSCs.

Using the vector of TF Z scores as features, we visualize he-

matopoietic differentiation within these data using t-SNE, which

clearly displays the expected branching into four distinct differ-

entiated final states representing erythroid, myeloid, lymphoid,

and pDC differentiation (Figures 2B and S2A–S2D). In past

work, we also used chromatin immunoprecipitation sequencing

(ChIP-seq) data as annotations to explore chromatin accessi-

bility differences in single-cell profiles (Buenrostro et al.,

2015b). Here, we found that ChIP-seq data from K562 cells, a

cell line described as an erythroid progenitor model, discrimi-

nated between cells at different stages of erythroid differentia-

tion, however, failed to capture the variance associated with

myeloid and lymphoid trajectories (Figure S2E). Therefore, due

to the relatively paucity of TF ChIP-seq in primary bone

marrow-derived CD34+ cells or in early myeloid and lymphoid

cell models, we chose to use TF motifs in downstream analyses.

Mapping Single Profiles on Hematopoietic Principal
Components
The TF Z scores can be used to cluster single-cell profiles,

however, this unsupervised analysis may not distinguish chro-

matin accessibility changes associated with differentiation

from changes associated with other biological phenomenon

such as the cell cycle or niche-dependent cell-cell signaling

(Crane et al., 2017). Furthermore, the use of t-SNE and TF

Z scores for clustering makes relative cell-cell distances difficult
Cell 173, 1535–1548, May 31, 2018 1537
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Figure 2. Lineage Projection of Human Hematopoietic Progenitors

(A) Top: hierarchical clustering of single-cell epigenomic profiles (columns) and TF motif accessibility Z scores (rows). Bottom: single-cell profiles colored by their

sorted immunophenotype identity.

(B) t-SNE of TF Z scores shown in (A), cells are colored by their sorted immunophenotype identify.

(C and D) Single-cell epigenomic landscape defined by PCA projection (see STAR Methods) colored by (C) cell type identity using immunophenotype and (D)

density (see STAR Methods) overlaid with nominal trajectories expected from the literature, as shown in Figure 1A.

(E–H) PC projection colored by (E) GATA, (F) CEBPB, (G) ID3, and (H) HOXA9 TF motif accessibility Z scores.

See also Figure S2, Table S2, and Data S1 and S2.
to interpret. We reasoned a reference guided approach that uti-

lizes accessibility co-variance of regulatory elements in bulk

hematopoietic samples, combining previously published (Cor-

ces et al., 2016) and additional reference profiles (see STAR

Methods), would provide a natural and intuitive subspace for

dimensionality reduction of single-cell data. To achieve this,

we implemented a computational strategy, similar to recent

methods for single-cell RNA-seq analysis (Li et al., 2017), that

first identifies principal components (PCs) of variation in bulk

ATAC-seq samples (Figure S2F) (Corces et al., 2016), then
1538 Cell 173, 1535–1548, May 31, 2018
scores each single-cell by the contribution of each PC. Cells

are subsequently clustered using the Pearson correlation coeffi-

cients between these normalized PCs scores and all other cells

(Figure S2G). For low-dimensional visual representation, we per-

formed PCA on this correlation matrix (Figures 2C and 2D) and

display the first 3 principal components, which represent

93.7% of the total subspace variance (Figures S2H–S2M).

We validated this computational approach by down sampling

bulk profiles to 104 fragments and find that the PCA-projection

approach closely follows sample clustering using the bulk



dataset (Figure S2N). We next down-sampled ensemble single-

cell profiles to match the sequence depths observed in single-

cells to quantify the expected mean error to be 1.95%, 1.70%,

and 3.1% per cell of the total signal for PCs 1–3, respectively

(Figures S2O and S2P). To test our sensitivity for identifying

intermediate cell states, we created synthetic mixtures from

ensemble profiles, down-sampled to 104 fragments and found

the synthetic mixtures to closely follow the expected paths (Fig-

ures S2Q and S2R). Last, we found this approach to be robust to

expected experimental confounders in single-cell data (Figures

S2S–S2V). Overall, this visual representation of the data provides

a reference-guided landscape of differentiation with similarities

toWaddington’s developmental landscape (Figure S1A), further-

more layering TF Z scores onto this representation provides

insight into the ‘‘guy wires’’ that may underlie epigenomic

changes during differentiation (Figure S1B).

The Continuous Landscape of Human Hematopoiesis
Using this computational approach, we find the CAL of human

hematopoiesis radiates away from a common basin of early he-

matopoietic progenitors (Figure 2C). HSC/MPP (left) and LMPP

(right) localize at the center of the projection, followed by CMP

and GMP cells that comprise a large and diverse basin. Differen-

tiation into CLP (lymphoid), MEP (erythroid), and monocytes

(myeloid) appear as distinct differentiation trajectories that

swoop away from the central HSC basin (Figure 2D). Further-

more, motifs associated with master lineage regulators ID3,

CEBPB, and GATA1 (Orkin and Zon, 2008) show continuous

gradients of activity across lymphoid, myeloid, and erythroid

development, while the HSC and LMPP compartment show

higher accessibility associated with the HOX motif (Figures 2E–

2H). We also observe examples of FACS misclassification of

cell types, particularly between CMP:MPP, GMP:LMPP (sepa-

rated by CD38), and GMP:CLP (separated by CD10), likely due

to the continuous nature of the cell surface markers (Figures

S3A–S3D).

CMP, GMP, and MEP profiles appear markedly heteroge-

neous in this projected space. We quantified the statistical

significance of this observed heterogeneity by comparing

the observed variability to down-sampled aggregate profiles

and found CMPs to be the most heterogeneous cell type (p <

10�111), with all cell types displaying statistically significant

heterogeneity (Figure S3E). To further assess the statistical sig-

nificance of this heterogeneity, we permuted peaks matched in

mean accessibility and GC content (see STAR Methods) and

find that variability across all cell types, with the exception of

monocytes (p = 0.35), remained statistically significant (Figures

S3F and S3G). Finally, single-cell TF Z scores (Schep et al.,

2017), which are calculated without using bulk ATAC-seq data

as a reference, also exhibit significant variability for all cell types

(Figure S3H). Thus, rather than identifying a series of discrete

cellular states (Figure 1A), these results suggest that the CAL

in early hematopoietic differentiation (HSC, MPP, LMPP, and

CMP) comprise a fairly broad basin of allowable states, while

paths of later differentiation becomemore canalized into distinct

and continuous differentiation trajectories (see Data S1; single-

cell CALs can be further explored using our web resource:

http://schemer.buenrostrolab.com/).
De Novo Identification of Uncharacterized Chromatin
States
Given the observed limitations of our sort markers, we sought to

define hematopoietic cell types de novo by applying k-medoids

clustering on the first five principal components from this PC

projection approach. We defined 14 unique clusters (Figures

3A and 3B; see STAR Methods) that largely overlap with

previously defined cell surface marker-based definitions of hu-

man hematopoietic subsets (Figure 3C) and changes in the

accessibility of TF motifs associated with hematopoiesis (Fig-

ure 3D). This analysis identified key hematopoietic regulators

de novo, including motifs associated with well-described master

regulators GATA1 (erythroid), CEBPD (myeloid), and EBF1

(lymphoid) lineage-specifying factors (Orkin and Zon, 2008).

Notably, we also find a specific HSC cluster of TFs that include

HOX, ERG, and MAFF motifs.

Using this clustering approach, we find that CMPs separate

into 4 clusters denoted here as clusters 2–5, which includes a

cluster with mixed contribution from CMP and MEP cells (cluster

5). We observe that the 4 CMP clusters within our data show

significant variability across motifs associated with GATA1,

BCL11A, and SPI1 (PU.1), TFs implicated in myeloid/erythroid

specification (Figure S3I). We identify 1,801 differentially acces-

sible regions across these CMP clusters, including two previ-

ously validated erythroid enhancers (Fulco et al., 2016)

regulating GATA1 expression (Figures S3I and S3J). Given these

differences, we assigned CMP clusters as CMP-K3 (early

erythroid), CMP-K5 (late erythroid), CMP-K4 (unknown), and

CMP-K2 (myeloid primed). These strong chromatin accessibility

differences further validate recent work describing functional

and transcriptional heterogeneity within mouse (Paul et al.,

2015; Perié et al., 2015) and human (Notta et al., 2016) CMPs

and strongly suggest that CMPs can be partitioned into myeloid

and erythroid committed progenitors. In addition, we also find

that MEP (K5–K7), GMP (K9,K10), and pDCs (K12,K13) predom-

inantly separate as two or more distinct clusters each, likely

representing early- and late-stage progenitor differentiation.

Chromatin Accessibility Variability within Data Driven
Clusters
We next sought to measure chromatin accessibility differences

within stringently defined HSC and LMPP progenitors, popula-

tions previously described as primed toward different lineage

fates (Busch et al., 2015; Karamitros et al., 2018; Laurenti and

Göttgens, 2018; Naik et al., 2013; Pei et al., 2017). To quantify

this variability, we created stringent cluster definitions that

required cells to be both CAL cluster-pure and immunopheno-

typically (FACS identity) pure populations, which we call

epigenomically and immunophenotypically pure (EIPP) clusters.

We then computed TF Z scores (Schep et al., 2017) for cells

within each EIPP group and found substantial heterogeneity

within these subsets (Figure S3K). To explore the relationship

of TF-associated variability within HSCs to directions of differen-

tiation, we categorized individual EIPP HSCs by their TF Z scores

(high or low), computed the distance between high/low centroids

in the PC space, and calculated statistical significance by

comparing high/low distances to permuted HSC EIPP profiles

(Figures 3E and S3L–S3N). Using this analysis approach, we
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Figure 3. Molecular Characterization of Data-Defined Clusters

(A) Single-cell epigenomic landscape defined by PCA projection, colored by data-driven cluster number.

(B) Medoids of data-driven centroids depicted on the PCA sub-space.

(C) Confusion matrix of data-driven clusters representing the percent frequency of immunophenotypically defined cell types.

(D) TF motif accessibility Z scores averaged across data defined clusters and hierarchically clustered. Scores are normalized by the max value of each TF motif.

(E) TF motif variability and direction –log10 p value for each TF motif for the HSC EIPP cluster, TFs sharing a similar motif are highlighted.

(F–H) TFmotif accessibility Z scores of HSC profiles for (F) RELA, (G) GATA2, and (H) MESP1motifs, arrows denote the direction of the signal bias and are colored

by the target cell type.

See also Figure S3.
find CTCF, nuclear factor kB (NF-kB) (represented by the RELA

motif), and ETS motifs to be significantly variable in HSCs,

however, uncorrelated with any specific direction of differentia-

tion (Figure 3F). Interestingly, NF-kB signaling (inflammatory

signaling) has been implicated in mouse HSC stem-cell mainte-

nance (Zhao et al., 2012) and HSC emergence mediated by

neutrophil secretion of tumor necrosis factor alpha (TNF-a)

(Espı́n-Palazón et al., 2014; Sawamiphak et al., 2014). In

contrast, we find the GATA (p = 10�17) and MESP/ID (p = 10�8)

motifs (represented by GATA2 and MESP1 motifs) TF Z scores

to be significantly correlated to erythroid and lymphoid trajec-

tories respectively (Figures 3G, 3H, and S3N). The direction of
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this TF bias is consistent with previous studies that lineage trace

HSCs that suggest that HSCs exhibit oligo-lineage bias toward

erythroid-myeloid or lymphoid cell fates (Pei et al., 2017).

We next turned to LMPPs, a subset previously shown to

demonstrate lineage priming toward dendritic (pDC), myeloid

(GMP:monocytes), and lymphoid (CLP:B cell) fates in mice

(Busch et al., 2015; Naik et al., 2013) and in human (Karamitros

et al., 2018). Interestingly, we found motifs associated with the

TFs TCF4, STAT1, and CEBPE to be significantly correlated

with directionality toward CLP, pDC, and GMP differentiation,

respectively (Figures S3O–S3R), notably the TCF4motif is similar

to the TCF3, ID3, and MESP1 motifs. TCF4 and CEBPE motif
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Figure 4. Identifying Continuous Differentiation Trajectories

(A–D) PC2 by PC3 projection of single-cells highlighting cells progressing through the inferred (A) erythroid, (B) lymphoid, (C) pDC, and (D) myeloid developmental

trajectory (black line), cells used for inference are colored by sorted identity, all other cells are shown in gray.

(E) Sorting schema for different GMP progenitors defined by CD123 expression, marked by CD123 low (GMP-A, light-gray), CD123 medium (GMP-B, gray), and

CD123 high (GMP-C, dark-gray).

(F) Bulk RNA-seq log2-fold-change and -(log p value) for expressed genes comparing GMP-C and GMP-A.

(G) Single-cells used for the myeloid trajectory colored by (left) their cluster identity (cluster colors as in Figure 3) or (right) their density along the trajectory.

(H) Density of myeloid progression scores for immunophenotypically defined cell types, including the GMP subsets.

See also Figure S4.
accessibility were anti-correlated with each other, and each

defined a unique direction toward CLP (lymphoid) or GMP

(myeloid) differentiation, respectively, suggesting antagonism

between myeloid/lymphoid differentiation programs. Sepa-

rately, the STAT1 motif accessibility appeared to be directed

toward CLP (lymphoid) and pDC (dendritic) cell fates. Overall,

this reference-guided computational approach provides a

statistical framework for assigning TF motif-associated vari-

ability to lineage-associated CAL variation providing a resource

for identifying molecular factors that may be involved in lineage

priming across multipotent cell populations.

Heterogeneous Cell Types Can Be Further Divided along
Developmental Trajectories
We next sought to order cells along continuous differentiation

trajectories across branches of hematopoietic development.
To achieve this, we first determined the shortest path between

cluster centroids and assigned cells to the closest point along

that path; a similar approach has been described for analyzing

scRNA-seq data (Shin et al., 2015). This approach aligned

cells to well-defined lineage pathways (Orkin and Zon, 2008)

producing an ordering of single cells along continuous

erythroid (K1,K3,K5,K6,K7), lymphoid (K1,K2,K8,K14), pDC

(K1,K2,K8,K12,K13), andmyeloid (K1,K2,K9,K10,K11) differenti-

ation trajectories (Figures 4A–4D and S4A–S4D). These

trajectories allow for interpretation of CAL heterogeneity within

progenitors and provide methods to further parse cellular sub

states across differentiation.

We examined variability within two clusters (K9 and K10) of

GMPs, which show significant differences in accessibility among

myeloid-defining factors SPI1 (PU.1) and CEBP-associated

motifs across themyeloid developmental trajectory (Figure S4E).
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To further partition this population, we sought to identify cell sur-

face markers that may differentially enrich for K9 and K10GMPs.

We hypothesized that CD123 expression may correlate with

early and late GMP differentiation for two reasons: (1) the UNK

population, which is CD123�/lo, is enriched in the GMP K9

cluster, and (2) CD123, also known as IL3RA, is a high-affinity

receptor for the myeloid promoting cytokine IL3. We therefore

performed scATAC-seq, bulk ATAC-seq (Buenrostro et al.,

2013, 2015a), and bulk RNA-seq on cells from three distinct

bins of CD123 expression (Figure 4E). Bulk ATAC-seq and

RNA-seq data revealed substantial chromatin accessibility and

transcriptomic differences across the GMP-A and GMP-C

populations (Figures 4F and S4F–S4H). The list of differentially

expressed genes included important developmental regulators,

including downregulation of HSPC TFs GATA2 and TAL1 and

upregulation of myeloid genes SPIB, IRF8, TLR7, and MPEG1

in the GMP-C cell population (Figure 4F). In addition, projection

of the scATAC-seq data from the three cell fractions revealed

that this strategy provides strong separation of early (GMP-A)

and late (GMP-C) stages of myeloid differentiation (Figures 4G,

4H, and S4I–S4K). Altogether, we validate the heterogeneity

within GMPs and more generally demonstrate a data driven

approach for defining cell populations from single-cell epige-

nomic data.

Motif Accessibility Dynamics along Myeloid Cell
Differentiation
The myeloid trajectory described above transits two heteroge-

neous cell populations (CMP and GMP), as such, regulatory

analysis of myeloid differentiation has been previously obscured

in bulk studies due to the limitations of the immunophenotypic

markers of these populations. We therefore sought to charac-

terize TF dynamics across myeloid development by mapping

TF Z scores to cells along the continuous myeloid differentiation

trajectory (Figures S4L–S4N). Using this approach, we find

6 clusters (see STAR Methods) of TF Z score profiles during

myeloid development (Figures 5A and S5A–S5C). Accessibility

at TFmotifs associatedwith regulators HOXB8 andGATA1 (clus-

ter 1) is high in HSCs and decreases through differentiation to

CMPs. Interestingly, loss of GATA motif accessibility (repre-

sented by theGATA1motif) beginswithin theHSCcompartment,

while HOX motif accessibility (represented by the HOXB8 motif)

is lost at the transition of HSC to CMP differentiation, suggesting

that loss of GATA motif accessibility may be an early event in

lineage commitment within HSCs (Figure 5B). We also observe

two distinct modes of activation for myeloid-associated TF

motifs; cluster 4 TFs (CEBPD- and SPIB-associated motifs)

display early and gradual gain in activity beginning within

CMPs, while cluster 5 TFs (STAT1-, IRF8-, and BCL11A-associ-

ated motifs) increase sharply in activity across the GMP-A to

GMP-C transition, implicating the CEBP family of TFs (repre-

sented by the CEBPD motif) as an initiating factor for myeloid-

erythroid specification (Figure 5C). In addition to the activity

patterns associated with canonical myeloid-defining factors,

we also identify a pulse of activity within CMPs from cluster

2 TFs (TCF3/12 associated TF motifs upregulated in CLP/

pDC), which may reflect transient activation of a lymphoid pro-

gram within pre-committed myeloid-biased CMPs (Figure S5C).
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Matching Transcriptomes with Chromatin Accessibility
Wenext aimed to develop ameans to pair single-cell epigenomic

and transcriptomic measurements, with the goal of linking chro-

matin accessibility changes associated with DNA sequence

motifs to expressed TFs, as well as linking accessibility changes

at putative enhancers to expression changes at target genes.We

first performed single-cell RNA-seq (10X genomics platform)

across HSC, CMP, and GMPs, collecting a total of 7,818 cells

passing filter (2,268, 4,454, and 1,096, respectively; Figure 5D).

In addition, we included publically available scRNA-seq data

from CD34+ and CD14+ monocyte cells (Zheng et al., 2017),

altogether analyzing transcriptional dynamics of 14,432 cells

across myeloid differentiation. Using these data, we developed

a reference-guided approach to pair scATAC-seq and scRNA-

seq profiles (see Data S2). To do this, we first fit a linear model

to match the measured bulk ATAC-seq PCs, which measure

global variation in chromatin accessibility, to changes in gene

expression as measured by bulk RNA-seq across sorted popu-

lations (Figures S5D–S5F). We then used this map between

ATAC-seq PCs and gene expression to assign ‘‘inferred tran-

scriptomes’’ to eachcell in the scATAC-seqdataset (FigureS5G).

Finally, to pair each scRNA-seq profile to a scATAC-seq cell, we

assigned scRNA-seq profiles to the most correlated scATAC-

seq ‘‘inferred transcriptome’’ (Figure S5H). Using this approach,

we found that the sorted identity of scRNA-seq profiles were

enriched for the corresponding matched sorted identity for

scATAC-seq profiles (Figure S5I). Furthermore, by pairing

single-cell RNA-seq to scATAC-seq cells, we found scRNA-

seq profiles of FACS-sorted CMPs associated with the four

scATAC-seq-defined CMP clusters discussed above (Fig-

ure S5J). Further validating the recent reports of heterogeneity

in mouse (Paul et al., 2015; Perié et al., 2015) and human (Notta

et al., 2016) CMPs, we found expression heterogeneity of known

hematopoietic regulators in CMPs, which included the TFs

HOXA5, GATA1, and CEBPB (Figures S5K and S5L).

Our approach provides a computational method to fit gene

expression changes across bulk ATAC-seq and RNA-seq ‘‘an-

chor points’’ generated from well-defined sorted populations,

providing a reference for analysis of single-cell gene expression

and chromatin changes spanning these anchor points to resolve

continuous regulatory changes in cell differentiation. This refer-

ence-guided strategy resulted in a total of 9,312 scRNA-seq cells

positioned across myeloid pseudo-time with high concordance

in the enrichment of immunophenotypically defined cells across

the trajectories (Figure 5E). Using this unified lineage order, we

mapped expression dynamics across myeloid cell differentiation

and found expected patterns across known regulators of myelo-

poesis (Figures 5F and 5G). To further validate this pairing

approach, we compared the ATAC:RNA paired lineage order

with ordering scRNA-seq cells using diffusion pseudotime

(DPT) (Haghverdi et al., 2016). In this comparison, we find that

the two approaches for cell ordering are overall highly correlated

(R = 0.86; Figure S5M). However, we find that unsupervised

ordering of HSCs using DPT was more correlated to the number

of genes detected than the ATAC:RNA pairing approach

described above (R = 0.68 versus R = 0.14), suggesting

computational ordering of scRNA-seq data with DPT may be

more sensitive to dropout (Figures S5N and S5O). This may be
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Figure 5. Transcription Factor Dynamics across Myeloid Differentiation

(A) K-medoids clustering of TF motif accessibility (left) and PWM logos (right) for dynamic TF motif profiles across myeloid development.

(B and C) Smoothed profiles of TF motif accessibility Z scores in myeloid progression for (B) HSC active TFs GATA1 (blue) and HOXB8 (green), and (C) monocyte

active regulators CEBPD (yellow) and BCL11A (red). Error bars (gray) denote 95% confidence intervals.

(D) t-SNE of scRNA-seq data showing HSC, CMP, GMP, and monocyte cells.

(E) Density of myeloid pseudo-time scores for (top) scATAC-seq and (bottom) computationally matched scRNA-seq profiles (see STAR Methods).

(F and G) Log2 mean expression profiles for TFs (F) CEBPD and (G) GATA2 across myeloid pseudo-time, (top) individual cells are colored by their sorted identity,

CD34+ cells are shown in black and (bottom) smoothed profiles are shown in red.

(H) Left: expression and (right) TF motif accessibility dynamics across myeloid pseudo-time for correlated (R > 0.5) gene-motif pairs.

See also Figure S5.
expected as DPT does not explicitly model cell-cell differences

in dropout (zero counts for genes) and further suggests that

computational tools for joint analysis of scATAC-seq and

scRNA-seq may be more robust to technical confounders.

Most importantly, the gene expression trajectories (Figure S5P)

are largely similar between the two approaches, supporting our

ATAC:RNA pairing approach.
Linking TF Expression with Associated Accessibility
Variation in Binding Motif
In effort to disambiguate TFs that bind the same or similar motif

and thus assign expression of TFs to downstream changes

in chromatin accessibility at TF motifs, we correlated the

expression of TFs with the TF motif Z scores across myeloid

pseudo-time. We then filtered for motif accessibility-TF
Cell 173, 1535–1548, May 31, 2018 1543



expression correlations of R > 0.5, this approach yielded 11 TFs

that defined different stages ofmyeloid development (Figure 5H),

including loss in the expression of HOX factors (HOXB7 and

HOXB8) (Argiropoulos and Humphries, 2007) and activation of

well-known master regulators of myeloid cell development

including SPI1 (PU.1) and IRF8 (Satpathy et al., 2012). Resolution

of the developmental order of these activated TFs across

myeloid differentiation has been previously obscured in bulk

studies, in part, due to the cellular heterogeneity within CMPs

and GMPs. Interestingly, we also observed a strong correlation

between GATA3 expression and GATA motif accessibility, dele-

tion of GATA3 has been shown to promote self-renewal in HSCs

(Frelin et al., 2013), together leading to the hypothesis that

GATA3 may be associated with HSC lineage priming. Here,

single-cell chromatin accessibility, paired with single-cell tran-

scriptomics, resolves the temporal dynamics of master regulator

expression and associated chromatin changes in myeloid cell

development, providing a resource for further functional studies

and for the analysis of regulatory changes associated with

differentiation.

Regulatory Element and Gene Activation across
Myelopoiesis
We next sought to characterize locus-specific cis-regulatory

dynamics during myeloid differentiation. We first filtered for reg-

ulatory elements with high fragment counts and with significant

variability across the ordered cells identifying 14,005 cis-regula-

tory elements for analysis (see STARMethods). These regulatory

elements exhibited highly heterogeneous patterns of accessi-

bility changes (Figures 6A–6C and S6A–S6C)—suggesting that

a limited number of TF motif accessibility patterns (k = 6) could

induce a surprising level of variation of chromatin accessibility

at individual regulatory elements. For example, within the regula-

tory elements surrounding the myeloid regulator CEBPD

(numbered for simplicity, see Figure 6B), the distal element

CEBPD-1 was ‘‘fast-to-activate’’ and showed stepwise gains

of activity while the distal element CEBPD-2 was ‘‘slow-to-acti-

vate’’ and showed a more discrete pulse of activity (Figure 6B).

To visualize the complete repertoire of dynamic regulatory

profiles, we ordered elements based on their accessibility

changes over this trajectory (Figures 6C and S6). This analysis

reveals multiple broad classes of regulatory element behaviors,

ranging from fast- to slow-to-repress HSC regulatory elements

and fast- to slow-to-activate monocyte regulatory elements (Fig-

ure 6C). We also observe a collection of ‘‘transition’’ cis-regula-

tory elements that exhibit peak accessibility at intermediate

stages of myeloid development, as well as ‘‘reactivation’’ ele-

ments that are initially lost and subsequently reactivated in later

stages of myeloid differentiation (Figures S6D and S6E). Thus,

from a small number of discrete clusters of TFmotif accessibility,

highly diverse cis-regulatory profiles likely arise from the combi-

natorial control of trans-factor binding to their target regulatory

elements (Figure S6F).

We reasoned that correlation between dynamically activated

patterns of distal regulatory elements with nearby expressed

genes may be used to connect enhancers to target genes

(Figure 6C). Indeed, we found dynamic regulatory elements sur-

rounding CEBPD were highly correlated with CEBPD expression
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(Figure 6D). More generally, we calculated the correlation of reg-

ulatory elements to dynamic genes within 10 Mb of annotated

transcription start sites (‘‘peak-gene pairs’’) and found that

proximal regulatory elements (<100 kb) were significantly more

correlated to the expression of nearby genes than distant ele-

ments (>100 kb) (Figure 6E). Further validating this approach,

we also found that the correlation of regulatory elements to

target genes improved as a function of loop confidence within

promoter capture HiC (PCHiC) data (Figure 6F), here defined

by PCHiC loops fromboth CD34+ (Mifsud et al., 2015) andmono-

cyte (Javierre et al., 2016) cells. Importantly, we find loop interac-

tions at this resolution do not necessarily define correlated

peak-gene pairs. In our analysis, only 45% of dynamic en-

hancers within high confidence loops are called as correlated

to the expression of PCHiC defined target genes (Figure S6G).

This observation may be due to the fact that PCHiC loops link

relatively large genomic regions, often encompassing multiple

regulatory elements, which may independently regulate down-

stream genes.

We next sought to test whether previously defined cis-linked

expression quantitative trait loci (cis-eQTLs) overlapped

enhancer-gene interactions identified using these integrated sin-

gle-cell data. We reasoned that correlated peak-gene pairs

could be used to functionally connect relevant genetic variation

at regulatory elements to consequences in gene expression

important in normal monocyte function. We therefore collected

previously published cis-eQTLs, derived from interferon-g and

lipopolysaccharide stimulation of monocytes (Fairfax et al.,

2014), and filtered for SNPswithin developmentally dynamic reg-

ulatory elements linked to dynamic genes (n = 370 peak-gene

pairs). To directly compare enrichment of either correlated

peak-gene pairs or PCHiC loops at cis-eQTL defined peak-

gene interactions, we determined significant enrichment of

each dataset by normalizing to a background set of peak-genes

matched for distance (Figure S6H). We found that cis-eQTLs

were strongly enriched for scATAC/scRNA-seq correlated

peak-gene pairs (p = 4.9 3 10�5) and observed only a modest

enrichment PCHiC loop interactions (p = 0.19) (Figures 6G and

S6I). Thus, statistical linkage between single-cell chromatin

accessibility and gene expression can serve as a means to

functionally link enhancers to target gene promoters.

DISCUSSION

We used single-cell chromatin accessibility and transcriptomic

analysis to identify regulatory heterogeneity and continuous

differentiation trajectories in early human hematopoiesis by

developing a broadly applicable computational framework for

analysis of these single-cell data. This framework includes a

means for visualizing single-cell chromatin accessibility, and

computationally pairing these data with single-cell RNA-seq,

by using bulk data as a reference. With this approach, we find

that immunophenotypically defined cell populations often flow

from one state to another and further we dissociate TF motif

activity variability within these populations as correlated or un-

correlated to axis of differentiation. In this effort, we find the

activity of TFmotifs, such as the GATAmotif in HSCs, may repre-

sent indicators of lineage priming pulling cells toward different
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Figure 6. Regulatory Element Dynamics Links Distal Elements to Genes

(A) Fragments per cell for a CEBPD distal element ordered by myeloid pseudo-time, (top) cells are colored by their sorted identity and (bottom) values are

smoothed (blue). Error bars (gray) denotes 95% confidence intervals.

(B) cis-Regulatory and expression dynamics across four regulatory elements near the myeloid regulator CEBPD.

(C) Accessibility (top) and expression (bottom) dynamics across myeloid pseudo-time, rows are sorted by their peak intensity in the myeloid trajectory.

(D) Regulatory profiles surrounding the CEBPD gene, dynamic enhancers are highlighted in gray with significant (blue) and non-significant (gray) correlated peak-

gene pairs shown as loops.

(E and F) Mean Pearson correlation coefficients binned by (E) genomic distance to the gene and (F) loop confidence. Error bars represent 1 SD on the estimate of

the mean.

(G) p value of enriched peak-gene correlation or promoter capture HiC at cis-eQTLs overlapping dynamic enhancers.

See also Figure S6.
developmentally committed states. While this reference-guided

approach enabled us to pair scATAC-seq and scRNA-seq data

along a common lineage trajectory, this approachmay be gener-

alized to pair cells along more-diverse cell fate transitions.

Notably, methods for computationally pairing multi ‘‘-omic’’ pro-

files have advantages over experimentally coupled approaches,

for example, a computational approach may provide (1) more

flexible experimental workflows, (2) allow pairing data across

experimental methods that may not be easily combined, and

(3) the reanalysis of the large repertoire of scRNA-seq data
already or soon-to-be collected (Regev et al., 2017). As such,

the data generated here and associated computational methods

may be broadly adapted to further develop computational tools

to pair different single-cell data types.

Furthermore, single-cell CALs can be aggregated to define

unique cis-regulatory elements active at different stages of

differentiation. The intersection of genetic variants with these reg-

ulatoryelementsmayprovidenew insights intocell typesorstages

of differentiation relevant to disease (Corces et al., 2016; Guo

et al., 2017). Current experimental methods that aim to associate
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non-coding genetic variation to changes in gene expression

generally measure either physical interactions using chromatin

conformation capture approaches (Javierre et al., 2016) or direct

genetic perturbation (Fulcoet al., 2016).Here,weshow that corre-

lation of naturally occurring regulatory heterogeneity across sin-

gle-cells can be used to pair regulatory elements to target genes.

This single-cell inference approach for linking regulatory elements

to genes may be particularly useful for inferring enhancer-gene

interactions in rare cells or across cells states where FACS

markers are not well defined. We expect future studies will

combine an integrated single-cell inference approach with phys-

ical interaction or genetic perturbation maps for improved linking

of enhancers to target genes, providing a single-cell resolved

interaction landscape of non-coding genetic variation.

Overall this work has defined one representation of the

epigenomic states underlying hematopoiesis, reminiscent of

Waddington’s landscape of differentiation. However, given the

static snapshot of the CAL profiles we have quantified it remains

uncertain to what degree density of this landscape might allow

inference of cell state transition kinetics and potential. Joint

measures with the emerging repertoire of CRISPR-based tools

for lineage tracing (Woodworth et al., 2017) will be essential for

quantifying the epigenomic contribution of lineage priming on

cell fate decisions over time. It also remains to be seen to what

extent lineage priming is reflected in transcriptional diversity

within HSCs and whether the lineage-associated CAL variability

we observe within HSCs is tightly coupled with transcriptional

changes (Yu et al., 2016). We expect future work to couple

single-cell epigenomic, transcriptomic, proteomic, and lineage

measures may reveal important insights into the molecular

details and temporal order of initiating regulatory factors govern-

ing multipotent cell fate transitions. Altogether, we expect further

improvements in experimentally or computationally integrating

multiple single-cell data types will unravel a dynamic regulatory

landscape providing a single-cell resolved systems perspective

for developmental or disease cell fate decisions.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Full list in SupplementaryTable1 This paper Table S1

Biological Samples

Healthy adult bone marrow allcells https://www.allcells.com/products/whole-

bone-marrow-aspirate

Critical Commercial Assays

Nextera DNA Library Preparation Kit Illumina FC-121-1030

C1 Single-Cell Auto Prep IFC for Open App Fluidigm 100-8133

Chromium Single Cell 30 Library & Gel Bead Kit v2 10X genomics 120267

Deposited Data

Raw sequencing data This paper GEO: GSE96772

Software and Algorithms

Bowtie2 http://bowtie-bio.sourceforge.net/bowtie2/

index.shtml

Samtools http://samtools.sourceforge.net/

chromVAR Schep et al., 2017 https://bioconductor.org/packages/release/

bioc/html/chromVAR.html

CellRanger v1.2.0 10X genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/downloads/latest

STAR 2.5.1b Dobin et al., 2013 https://github.com/alexdobin/STAR

Other

Bulk ATAC-seq and bulk RNA-seq Corces et al., 2016 GEO: GSE74246

Promoter capture HiC, CD34+ Mifsud et al., 2015 STAR Methods

Promoter capture HiC, monocytes Javierre et al., 2016 STAR Methods

Cis-eQTL, monocytes Fairfax et al., 2014 STAR Methods
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, William J.

Greenleaf (wjg@stanford.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell collection and isolation
Human bone marrow was sorted as previously described (Corces et al., 2016). In addition to the cell types previously described, we

also isolated plasmacytoid dendritic cells (pDCs), an unknown population (UNK) and megakaryocytes. To isolate pDCs from human

bone marrow using FACS we gated for live, lineage negative, CD34+ CD38+ CD10- CD45RA+ CD123+ cells. To isolate UNK cells

from human bone marrow by FACS, we gated for live, lineage negative, CD34+ CD38+ CD10- CD45RA+ CD123-. Megakaryocytes

were isolated using in vitro differentiation of bone marrow derived CD34+ cells to megakaryocytes. To do this, CD34+ cells were

cultured in StemSpan SFEM with Megakaryocyte Expansion Supplement (Stem Cell Technologies) for 14 days, yielding

approximately 100-fold expansion in cell number. After cell isolation of all populations using FACS, 15,000 single-cells were

resuspended in 100 mL of BAMBANKER serum-free cell freezing medium (Wako Chemicals, 302-14681) and cryopreserved in liquid

nitrogen. Samples were collected commercially from allcells. Further information about the donors profiled and FACS protocols can

be found in Table S1.
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METHOD DETAILS

Single-cell ATAC-seq and single-cell RNA-seq
Single-cells not cryopreserved after FACS (fresh) were assayed as previously described (Buenrostro et al., 2015b). To assay cells

cryopreserved after FACS (frozen), cells were allowed to recover for 10 min at 37�C in IMDM with 10% FBS. After recovery, cells

were washed twice in cold 1x PBS and once in with the C1 DNA Seq Cell Wash Buffer (Fluidigm). Cells were then resuspended in

6 mL of C1 DNA Seq Cell Wash Buffer, and were combined with 4 mL of C1 Cell Suspension Reagent, 7 mL of this cell mix was loaded

onto the Fluidigm IFC. Single-cells were then assayed using scATAC-seq as previously described (Buenrostro et al., 2015b).

Single-cell RNA-seq
Single-cell RNA-seq data was collected using the recommended protocol for the 30 scRNA-seq 10X genomics platform

using v2 chemistry. DNA shearing used the Covaris S220, libraries were sequenced on a NextSeq with 26x8x98 read lengths.

Bulk ATAC-seq and RNA-seq
ATAC-seq and RNA-seq libraries were generated as previously described (Buenrostro et al., 2015b; Corces et al., 2016) with slight

modifications for frozen cells. One vial of 15,000 frozen cells in 100 mL of BAMBANKER freezingmediumwas quickly thawed at 37�C.
70 mL for bulk ATAC-seq and 30 mL for bulk RNA-seq were then added to 500 mL of warm IMDMwith 10% FBS. For bulk ATAC-seq,

the cells were split into 2 tubes of 5,000 cells used as technical replicates. Cells were washed twice in 1x PBS, all supernatant was

carefully removed without disturbing the cell pellet, and cells were resuspended in 40 mL of transposition mix (20 mL of 2x TD buffer,

2 mL of TDE1, 0.2 mL of 2% digitonin, 13.33 mL of 1x PBS, and 4.47 mL of nuclease-free water) (Illumina, FC-121-1030; Promega,

G9441), here the transposition reactions were scaled down to compensate for cell loss during washes. Transposition reactions

were incubated at 37�C for 30 min in an Eppendorf ThermoMixer with agitation at 300 rpm. The transposed DNA fragments were

purified and amplified as described (Corces et al., 2016).

For bulk RNA-seq, cells were split into 2 technical replicates. RNA was isolated using the QIAGEN RNeasy Plus Micro kit, and RNA

was eluted in 10 mL of RNase-free water. 5 mL of total RNA was used as input for NuGen Ovation V2 cDNA synthesis kit. The yield of

purified SPIA-amplified cDNA was measured using Qubit dsDNA HS Assay kit. 50 ng of SPIA cDNA was fragmented using Nextera

DNA library preparation kit (Illumina, FC-121-1030). Fragmented SPIA cDNA was then purified using QIAGEN MinElute Reaction

Cleanup Kit, and purified DNA was eluted in 10 mL of elution buffer (10mM Tris-HCl, pH 8). Purified SPIA cDNA fragments was

amplified and purified as previously described for ATAC-seq (Corces et al., 2016). ATAC-seq and RNA-seq libraries were quantified

using qPCR, amplified libraries were sequenced using paired-end, dual-index sequencing on a NextSeq 500 instrument with 76 bp

read lengths.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data pre-processing and TF scores
Single-cell and bulk ATAC-seq alignment, quality filtering and peak calling was performed as previously described (Corces et al.,

2016), with one exception. For single-cell profiles, any fragment that occurred in two cells from the same experiment (a single

96-cell IFC) was removed from further analysis. Using the previously described approach (Corces et al., 2016), we defined a peak

list using all bulk hematopoietic data analyzed here, resulting in 491,437 500bp non-overlapping peaks which we use for the

remainder of this study. To count the number of fragments per peak in a sample or cell, for computing TF z-scores per cell and

for determining background peak sets matched in GC and peak intensity, we used the default settings in the chromVAR package

(Schep et al., 2017). Single-cells were filtered for quality requiring at least 60% of fragments in peaks and requiring greater than

1,000 fragments passing quality filters, quality filters are previously described (Corces et al., 2016) which includes removal of mito-

chondrial reads and low alignment quality (Q30). Bulk counts were normalized as previously described (Corces et al., 2016) using

quantile normalization and the CQN package.

PCA projection
To calculate PCs on the bulk datasets, later used for projecting single-cell profiles, we first removed peaks in annotated promoters or

aligning to chrX, peaks associated with chrY and unmapped contigs were filtered out in the preprocessing steps described above.

455,057 peaks remained after filtering and were used for the PCA projection analysis. To normalize the bulk count matrix by library

size, we identified 19,287 low variance promoters, using a MATLAB implementation of a previously described approach (Brennecke

et al., 2013), across all bulk samples and normalized each sample by the mean fragment counts within the low variance promoters.

We subsequently took the mean counts of all normalized bulk sample replicates (HSC, MPP, LMPP, CMP, GMP, MEP, Mono, CD4,

CD8, NK, NKT, B, CLP, Ery, UNK, pDC and Megakaryocyte) and performed PCA-SVD, resulting in 15 principal components.

To score single-cells by the activity for each component, we first centered the counts for each cell by dividing each peak by the

mean fragment counts in peaks for a given cell. We then used the weighted coefficients for each peak and PC (determined using

PCA-SVD of the bulk data above) to take the product of the weighted PC coefficients by the centered count values for each cell,

taking the sumof this value resulted in amatrix of cells by PCs. Last, we calculate a cell-cell similaritymatrix using Pearson correlation
e2 Cell 173, 1535–1548.e1–e5, May 31, 2018



and perform PCA on the similarity matrix of correlation values. To assess this computational approach, we repeated this procedure

for the bulk data, down sampled bulk data, mean single-cell profiles and synthetic mixtures. Notably, we found a patient-specific

batch effect in the HSC single-cell profiles in the PCA projected sub-space, this batch signal was strongly correlated with Jun/Fos

TF z-scores. We therefore normalized each HSC batch to the mean value of all HSC profiles, and in addition, we blacklisted all motifs

correlated with Jun/Fos accessibility. Correlated Jun/Fos motifs were determined by calculating motif similarity (Pearson) (Schep

et al., 2017) and removing all motifs with an R > 0.8. We use these corrected PC values and filtered TF motifs for all subsequent

visualizations of these data.

To determine significant cell-cell variability in the PC projected sub-space, we either down sampled or permuted peaks by their GC

content and mean accessibility. To permute peaks that match GC% andmean accessibility, we take the sum accessibility of all cells

of a given immunophenotypically defined cell type (e.g., HSCs) and use the ChromVAR function ‘‘get_background_peaks’’ with the

default settings. Notably, ChromVAR samples background peaks with replacement and may select the observed peak as a

background peak, and therefore provides a conservative estimation of excess variability.

Clustering, K-medoids and computing density
All hierarchical clustering performed used Pearson correlation as the distance function. All k-medoids clustering shown in this work is

performed using 10 replicates with the distance function Pearson correlation. For k-mediods clustering throughout this work, the gap

statistic is used to determine the appropriate number of clusters, here the optimal cluster number is determined wherein theminimum

K satisfies the follow criteria: the gap value for a given K is greater than the gap value of K+1minus the standard error of the clustering

solution for K+1. The first 5 PCswere chosen for clustering cells by their projected PC values. All metrics of cell data density shown in

this work are weighted by the expected in vivo frequency of each cell type, as measured from flow cytometry data. 2D data density is

calculated using KDE weighted by the in vivo frequency.

Lineage bias analysis
To compute TF variability within epigenome and immunophenotype pure (EIPP) cells, we first determined the most represented cell

type for each of the 14 k-medoids determined clusters. We defined EIPP clusters as cells that were immunophenotypically-marked

by this most-represented type, and also were within one of the k-medoids clusters. We then collected cluster-pure and immunophe-

notype-pure profiles for HSCs (k1 cluster) and LMPPs (k8 cluster), and proceeded to compute variability and TF z-scores using

ChromVAR (Schep et al., 2017). To determine the magnitude and direction of the TF lineage bias, we first partitioned TF z-scores

as greater than zero (high) or less than zero (low). We then computed the mean of the first 5 PCs from the PCA projection for the cells

assigned to the high or low TF z-score, distance of the high and low centroids was calculated using Euclidean distance. We

determined significance using ‘‘direction z-scores,’’ whereby we repeated the analysis described above for PCs calculated using

50 background peak permutations matching GC and mean accessibility, peaks were determined using ChromVAR (Schep et al.,

2017). Direction z-scores were computed comparing the observed to the 50 permuted distances.

Significantly differential CMP peaks
To determine differential CMP peaks, aggregate CMP profiles for each k-medoids cluster were collected. Pairwise binomial tests

were performed for each aggregate profile (4 CMP clusters) for each peak. Peaks with a p value of < 10�5 in one ormore comparisons

was used for further analysis (n = 1,801 peaks). For clustering and visualization, counts were normalized using column z-scores and

clustered using k-medoids, the gap statistic (as described above) was used to determine a K of 6.

Ordering cells for pseudo-time and smoothing
To determine continuous differentiation trajectories, we developed a supervised approach, similar to a recently published method

(Shin et al., 2015). To do this, we first fit a line through each cluster centroid for the relevant clusters using linear interpolation across

the first 5 PCs from the PC projection described above. These relevant clusters were determined using prior literature describing

functional cell differentiation trajectories. To assign each cell to a given trajectory, we determined the closest point of each cell within

the implicated clusters to the interpolated fit line that connected each cluster centroid across the 5 projected PCs (the closest point

was determined using Euclidean distance). The pseudo-time values represented in the main figures represent Euclidean distance

along the interpolated line across the 5 PCs from the projected PC space, all values are relative to the mean of HSCs (defined as

the start point for all trajectories) and thus represent the value 0 in all pseudo-time trajectories. To order cells by myeloid develop-

ment, only cells within clusters K1, K2, K9, K10, K11 were considered. For the erythroid, lymphoid and pDC trajectories, only the

following clusters were considered: erythroid (K1,3,5,6,7), lymphoid (K1,2,8,14) and pDC (K1,2,8,12,13). To determine the TF motif

accessibility dynamics across this inferred trajectory, we smoothed the TF z-scores alongmyeloid progressionwith a lowess function

with a span of 200, implementedwithin theMATLAB function smooth. Continuous profileswere normalized by their min/max value for

plotting and downstream clustering. The accessibility of individual peaks were smoothed and normalized as was done with TFs,

however, with the notable difference of smoothing using a span of 500. To determine error in the smoothed TF z-score profiles

and cis-regulatory elements we computed 95% confidence intervals by resampling cells (n = 100 permutations) with replacement.

We next repeated the smoothing for each permutation and used the MATLAB function paramci to determine the 95% confidence

interval per TF or regulatory element.
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Filtering and regulatory element analysis
To determine TFs that were significantly variable within the smoothed myeloid trajectories, we compared the standard deviation of

the observed smoothed scores to a set of similarly smoothed, permuted, TF scores generated by randomly permuting the myeloid

cell order. Selecting TFs with a standard deviation greater than 0.5 provided 205 motifs with an FDR < 1%. We used two criteria to

determine highly variable regulatory elements, to do this we first filtered regulatory elements with greater than a mean

accessibility of 0.01 fragments per cell and subsequently filtered for regulatory elements with a coefficient of variation of greater

than 0.5 (n = 3,403), resulting in a high-quality list. This list was used for all analysis of regulatory elements except for quantifying

enrichment at cis-eQTLs. For cis-eQTL analysis we reduced the coefficient of variation filter to 0 to yield a larger list of peaks for

analysis (n = 14,005).

To determine motif enrichment across dynamic accessible peaks, we first collected log-PWM scores per peak using ChromVAR

(Schep et al., 2017) for motifs that were selected in the TF analysis described above. Peak-to-peak distances were computed using

Euclidean distance of the PC scores determined by PCA of the min/max normalized accessibility dynamics across the myeloid

trajectory. For each peak, the mean log-PWM score was computed for the nearest 300 peaks.

Bulk and single cell RNA-Seq analysis
Raw RNA-Seq reads were aligned to hg19 and quantified per cell barcode using CellRanger v1.2.0 (https://support.10xgenomics.

com/single-cell-gene-expression/software/downloads/latest). While the full quantification pipeline is automated and reproducible

through CellRanger, we briefly describe the workflow here. First, raw sequencing data was demultiplexed using Illumina bcl2fastq

v2.17.1.14. Raw sequencing reads per cell barcode were aligned using STAR version 2.5.1b (Dobin et al., 2013) before duplicates

were removed based on unique molecular indicies (UMIs). Per cell, per transcript counts were aggregated, and cells with fewer

than 1,000 UMIs/gene counts were excluded. To augment our sorted scRNA-Seq data, we downloaded processed monocytes

and CD34+ scRNA-Seq data (as previously described (Zheng et al., 2017)) from the 10X website.

To match the exact feature set quantified in the scRNA-Seq pipeline, all bulk RNA-Seq (including samples originally described in

our previous study (Corces et al., 2016) and new samples described in this study) were aligned and quantified using STAR version

2.5.1b (Dobin et al., 2013) and the same gene transfer format file provided in the CellRanger v1.2.0 distribution. Read counts for

biological replicates were summed over each transcript to provide a single transcript count per sorted cell type.

Matching scRNA-seq to scATAC-seq
scRNA-seq profiles were matched to scATAC-seq profiles by first linking bulk ATAC-seq PCs to bulk RNA-seq expression profiles.

To do this, we first normalized the projected PC scores per cell by the sum-of-squares, which effectively normalizes to differences in

the number of reads per cell, and determined the mean projected PC score (in scATAC-seq space) for each immunophenotypically

defined cell type with matched bulk RNA-seq. We then trained a linear model, using stepwise regression (MATLAB implementation),

to fit the log2 expression of all bulk gene expression profiles across sorted populations as the linear combination of ATAC-seq PC’s.

Using the fit coefficients from the stepwise regression, we inferred the expression of all genes for each scATAC-seq profile to produce

a reference-assisted ‘‘inferred transcriptome.’’ To match scRNA-seq data to scATAC-seq cells, we first selected for genes that were

both variable (defined by a standard deviation across cells greater than 3) and well described by the regression model of bulk PCs

(R > 0.9) resulting in a total of 853 genes. To improve matching by denoising profiles, we performed PCA on the expression level

inferred for these variable genes, then scored profiles for both scATAC-seq ‘‘inferred transcriptomes’’ and scRNA-seq transcrip-

tomes by the PC loadings from this PCA. Next, we calculated the correlation (Pearson), using the top 20 PCs, between each

scATAC-seq ‘‘inferred transcriptome’’ and each cell from the scRNA-seq dataset. Single-cell RNA-seq profiles were then matched

to ATAC-seq data by selecting the single-cell ATAC-seq cell with the maximum correlation coefficient. ScRNA-seq cells with low

correlation values (R < 0.9) were discarded from further analysis.

Integration of promoter capture Hi-C data
Processed promoter-capture Hi-C loops for CD34+ (Mifsud et al., 2015) andmonocytes (Javierre et al., 2016) were downloaded from

the supplemental resources associated with each of the original publications. While the authors reported only significant loops for the

CD34+ data, we filtered loops from the full dataset, thresholding the interaction score to > 5 as recommended by the authors. In

instances where the promoter bait spanned two or more defined gene promoters (as reported in the original data file), loops were

considered for each promoter gene separately. In total, 275,848 significant loops for CD34+ and 443,980 significant loops for

monocytes were considered in our downstream analyses, 36,962 loop were overlapping (same target promoter; same distal regu-

latory annotation).

Monocyte cis-eQTL data
A list of statistically significant cis-eQTL associations were downloaded from the supplemental materials from Fairfax et al., (2014).

Only cis-eQTLs within the longer list of dynamic regulatory elements were considered (n = 14,005), no other filtering was performed.

The filter for variable genes was reduced to generate a longer gene list (std. > 2, n = 1,983). Using this expanded list 370 cis-eQTLs

with associated dynamic peak-gene pairs were available for analysis.
e4 Cell 173, 1535–1548.e1–e5, May 31, 2018

https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest
https://support.10xgenomics.com/single-cell-gene-expression/software/downloads/latest


DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data reported in this paper is GEO: GSE96772. Processed scATAC-seq data, which

include PC values and TF scores per cell can be found in Data S1. The software developed for analyzing these data, which includes

projecting scATAC-seq profiles onto bulk hematopoietic PCs and pairing single-cell ATAC-seq with single-cell RNA-seq, as well as

processed data from this manuscript can be found in Data S2.

ADDITIONAL RESOURCES

The data can be visualized in the UCSC genome browser using the track hubs representing bulk data (https://s3.amazonaws.com/

JasonBuenrostro/scATAC_heme_label/hub.txt) and clusters of single-cell ATAC-seq data (https://s3.amazonaws.com/

JasonBuenrostro/scATAC_heme/hub.txt). This manuscript is accompanied by a web resource for visualizing the single-cell

ATAC-seq data, which can be found at: http://schemer.buenrostrolab.com/.
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Supplemental Figures

Figure S1. Quality Characteristics of Single-Cell Epigenomes, Related To Figure 1

(A and B) Waddington landscape representing (A) the sinuous epigenetic landscape wherein a cell (ball) can roll down different cell fates, and (B) ‘‘guy-wires’’ that

shape the epigenetic landscape.

(C and D) Comparison of scATAC-seq from ‘fresh’ (blue) and cells frozen after FACS sorting (red), only cells passing quality filtering are shown. Profiles fromHSCs

showing the (C) fragment yield per cell and (D) fraction of fragments in peaks.

(E) Comparison of the log2 accessibility between donor-matched fresh and frozen aggregate accessibility profiles, R = 0.88.

(F) Fraction of immunophenotypically defined cell types from CD34+ cells for each bone marrow donor, ungated cells are marked in gray.

(G) The measured (blue) and average in vivo (yellow) frequency of cells in the dataset.

(H) Fragment size (bp) distribution and

(I) enrichment at transcription start sites (TSSs) for bulk (blue) and aggregate single-cell (red) profiles.

(J) Number of cells passing filter for each cell type assayed.

(K and L) Mean (K) fragment counts and (L) fraction of reads in peaks of cells passing filter for each cell type assayed. Error bars represent SEM.
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Figure S2. Analytical Frameworks for Clustering scATAC-Seq Profiles, Related to Figure 2

(A–D) t-SNE embedding of cells colored by the TF z-score activity of (A) GATA1 and (B) CEBPD motifs, or the quality metrics (C) log10 fragment counts and (D)

fraction of reads in peaks.

(legend continued on next page)



(E) t-SNE embedding of single-cell profiles using ENCODE ChIP-seq of K562s as a feature vector, instead of the TFmotifs shown above, cells are colored by their

cell identity.

(F) PC1 and PC2 from PCA of fragments in peaks for bulk samples (gray) and their centroids (red).

(G) (left) Hierarchical clustering of the correlation of single-cell epigenomic profiles scored by bulk PCs, (right) profiles colored by their sorted immunophenotype

identity.

(H) Percent variance explained for each PC from (top) PCA derived from bulk data using fragments in peaks and (bottom) PCA of the PCAprojected subspace (see

STAR Methods).

(I–M) PC projection of single-cell ATAC-seq data showing cells scored by PC components (I) PC1 and PC2, (J) PC2 and PC3, (K) PC3 and PC4, (L) PC4 and PC5,

and (M) PC5 and PC6.

(N) Bulk sample-sample correlation matrix determined by correlation of (left) fragments in peaks, (middle) PCA projection values and (right) PCA projection values

after down sampling data to 10,000 fragments per sample. Far left represents the sorted immunophenotype of each bulk sample.

(O and P) PCA projection of mean single-cell profiles of immunophenotypically defined cell types down-sampled to (O) 10,000 or (P) matched fragment counts to

the observed single-cell dataset.

(Q and R) Synthetic mixtures of two immunophenotypically defined single-cell profiles down sampled to 10,000 fragments with varying mixtures of (Q) CMP/GMP

and (R) LMPP/CLP cell types, unmixed cell types from (O) are shown for reference.

(S–V) PCA projection of single-cells colored by (S) log10 fragment counts, (T) fraction of reads in peaks, (U) fresh HSC versus frozen profiles, and (V) donor.
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Figure S3. Sources of Variability within Defined Cell Types, Related to Figure 3

(A and B) PCA projection of highlighted cell types for (A) MPP and GMP, and (B) CMP and LMPP.

(C and D) Flow cytometry back gating of (C) CMPs and (D) GMPs to show that a subset of cells exhibit CD90 and CD45RA cell surface marker expression without

significant CD38 signal. These potentially mis-gated CMPs localize to the MPP gate while mis-gated GMPs localize to the LMPP gate.

(E) Fold variance of the PCA projection over the variability expected due to count noise, determined by down-sampling counts from the mean of each im-

munphenotypically defined cell type to matched sequencing depths of the observed single-cell profiles. Error bars represent 1 standard deviation estimated

using bootstrap sampling (1,000 iterations) of cells.

(F) Peaks are permuted by their GC content and the mean fragment count for each aggregate immunophenotypically defined cell type, and permuted single-cell

profiles are projected onto the PC subspace, un-permuted cells shown in gray for reference.

(G) Fold variance over expected for each cell type, quantified as described in (E) using the permuted scores shown in (F).

(H) TF motif z-score variability sorted by the rank score for each cell type.

(I) (left) Differential motifs and (right) regulatory elements across CMP clusters (K2-5), motifs are normalized by max-min values and regulatory elements are

normalized as z-scores and clustered using k-medoids.

(J) Accessibility at GATA1 locus across the CMP clusters highlighting (gray) two validated (Fulco et al., 2016) enhancers of GATA1.

(K) Cell-cell TF motif variability within each EIPP cluster (see STAR Methods).

(L) Peaks were permuted by their GC content and mean peak fragment count for each aggregate single-cell profile, single cell profiles were then projected onto

the PC subspace.

(M) (left) Schematic for determining direction p value using permuted PCA scores (n = 50) described in (F) and (L), (right) TF motif variability and

direction –log10 p value for each TF motif for the HSC EIPP cluster.

(N–R) Hierarchical clustering of single-cell (N) HSC and (P) LMPP EIPP profiles (columns) for TF motifs appearing as highly variable and directional (rows). (O-R)

PC2 and PC3 projection of single LMPP profiles colored by high (yellow) or low (blue) TF motif accessibility z-scores for (O) TCF4, (Q) STAT1 and (R) CEBPE

motifs, arrows denote the direction of the signal bias.
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Figure S4. Heterogeneity and Development Ordering of GMPs, Related to Figure 4

(A–D) Histogram denoting number of cells within each point in the (A) myeloid, (B) erythroid, (C) lymphoid and (D) pDC by pseudo-temporal developmental

ordering.
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(E) TF motifs sorted by their rank difference in the mean TF z-score between GMP K10 and K9 clusters, important regulators are highlighted.

(F and G) Scatterplots colored by density denoting log2 fragments in individual peaks across samples for (F) UNK versus GMP-A and (G) GMP-A versus GMP-C

profiles.

(H) Genome browser track highlighting two differentially accessible regions surrounding the GATA2 gene.

(I) PCA projection of (light gray) GMP-A, (gray) GMP-B and (dark gray) GMP-C single-cell profiles.

(J) Frequency of single-cell profiles from differing GMP sorted immunophenotypes within previously defined data-driven epigenomic clusters.

(K) Single-cell profiles colored by their immunophenotypic cell type identity rank sorted by myeloid developmental progression.

(L–N) Single-cell myeloid progression and TF z-scores for (L) BCL11A, (M) CEBPD and (N) GATA1 motifs, smoothed motif accessibility trajectories are shown

in red.
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Figure S5. Chromatin Accessibility and Expression Dynamics across Myeloid Cell Differentiation, Related to Figure 5

(A) The standard deviation of smoothed TF accessibility scores, as shown above, for observed scores (blue) and cells randomly permuted (red), dotted line

represents an FDR less than 1%.

(B) Gap values for 1 to 20 k-medoids clusters, with optimal cluster number 6 highlighted. Error bars represent 1 SD on the within cluster dispersion.(C) Centroids

for each k-medoid TF cluster for (left) early and (right) late acting TFs, cells ordered by myeloid development (top) are shown for reference.

(legend continued on next page)



(D) Computational workflow for pairing scATAC-seq with scRNA-seq profiles using bulk data as reference.

(E) Stepwise regression fit coefficients linking the activity of scATAC-seq PCs to the expression of CEBPD.

(F) Fit and observed expression values (Log2) for bulk transcriptomes of sorted populations (R = 0.996).

(G) PCA projection of scATAC-seq cell profiles colored by inferred expression of CEBPD.

(H) Hierarchical clustering of scATAC-seq by scRNA-seq profiles, values represent Pearson correlation coefficient (see STAR Methods).

(I and J) Fraction of cell assignments for (I) scRNA-seq profiles to immunophenotypically defined cell types in scATAC-seq data and (J) CMP scATAC-seq of

different donors or scRNA-seq profiles to defined clusters as shown in Figure 3B.

(K) scRNA-seq counts of CMP cells matching to cluster 2 or cluster 3 scATAC-seq cells.

(L) Hierarchical clustering of genes for scRNA-seq CMPs matched to the four scATAC-seq defined CMP clusters showing (top) significantly variable genes or

(bottom) known marker genes.

(M) Correlation of transcriptome profiles ordered by their developmental trajectory, comparing scATAC and scRNA pairing (as described in the main text) with

diffusion pseudo-time (DPT) of cells (HSCs in green, CMP in yellow and GMP in orange).

(N andO) Pseudotime order and number of genes detected for HSCs using (N) ATAC:RNA pairing and (O) DPT, cells are colored by the number of genes detected.

(P) Log2mean expression profiles for TFs (left) HOXA9 and (right) CEBPD acrossmyeloid pseudo-time determined using (top) ATAC:RNA pairing or (bottom) DPT,

cells are colored by their sorted identity and smoothed profiles are shown in red.
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Figure S6. Association of TFs and Genetic Variants to Regulatory Element Dynamics across Myeloid Differentiation, Related to Figure 6

(A and B) Example cis-regulatory dynamics across myeloid development for (A) HSC active peaks and (B) a reactivated peak near IL7.

(C) Hierarchical clustering of k-medoids centroids across all peaks, values (left) denote number of peaks per cluster and labels (right) denote categorization into

different global patterns.
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(D and E) t-SNE plots of dynamic enhancer profiles highlighting (D) reactivation or transition elements, points are colored by themax accessibility of the element in

myeloid pseudo-time, and (E) colored by accessibility in monocytes.

(F) (left) Schematic for determiningmotif enrichment across similar peak profiles, (right) raw log PWM score or averaged (see STARMethods) local PWM score for

a representative subset of dynamic TF motifs across myeloid development for the t-SNE embedding shown in Figure 5.

(G) Fraction of correlated peaks (R > 0.5) as a function of loop confidence. Error bars represent 1 standard deviation on the estimate of the mean.

(H) Distribution of distances of cis-eQTLs (purple) or background peak-gene pairs (gray) to the predicted target gene.

(I) Regulatory profiles surrounding the ITGAX gene (also known as CD11c), dynamic enhancers are highlighted in gray with significant (blue) and non-significant

(gray) correlated peak-gene pairs shown as loops, cis-eQTL rs1978487 is highlighted.
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