silico.biotoul.fr
 

Analyse de séquences II: alignements multiples et profils

From silico.biotoul.fr

Jump to: navigation, search




Contents

Comparaison de 2 séquences

Vous allez comparer deux séquences correspondant à deux facteurs de transcription krox 24 et sp1, contenus dans les fichiers Krox24 et sp1.

En utilisant la suite / EMBOSS

  • Construisez un dotplot avec dotmatcher de ces deux séquences.Vous devez observer une similitude locale.
  • Comparez ensuite les deux séquences avec un alignement local en utilisant matcher (paramètres par défaut Gap penalty 14 et Gap length penalty. Retrouvez vous le résultat du dotplot?
  • Consultez les entrées SwissProt (Krox24 accession number P18146 et sp1 accession number P08047)pour déterminer à quoi correspond cette similitude locale.

Le dotplot peut également être utilisé pour étudier les régularités structurelles d'une séquence. Vous allez tester cette approche sur les deux exemples suivants.

  • Localisation de répétitions : analysez avec dotpath la séquence de rétrotransposon de tabac contenue dans le fichier Transposon Tnt1 (cochez la case 'Display the overlapping matches'). En jouant sur le paramètre de taille de fénêtre, identifiez le nombre de répétitions significatives ?
  • Faible complexité : de la même façon analysez la séquence contenue dans Plasmodium falciparum. Qu'observez-vous? A quoi cela correspond dans la séquence.


Alignement local et alignement global

En utilisant la suite / EMBOSS, nous allons réaliser une comparaison entre les isoformes alpha des protéines BCL2 humaine et de souris (numéro d'accesion P10415 et Q64373).

  • Faites un dotplot avec dotpath

Concluez

  • Faites un alignement global entre les 2 séquences avec Needle

Combien y a-t-il de gaps ?
A quoi correspond le pourcentage de similarité ?
Quels sont les paramètres de calcul du score ?
Modifiez-les et regardez en quoi l'alignement change.

  • Faites un alignement local avec Matcher

Qu'observez-vous ?
Demandez à voir d'autres alignements. (option 'Number of alternative matches', par défaut paramétrée sur 1)
Puis modifier les paramètres du score.

Alignement multiple

  • Réalisez un Blast avec P10415 sur la banque SwissProt
  • Sélectionner un ensemble de séquences pour réaliser l'alignement multiple (une dizaine).

ATTENTION: si vous voulez faire ressortir des zones conservées versus des zones peu ou pas conservées au cours de l'évolution, il faut construire un échantillon dans lequel vous prendrez en compte des séquences proches mais aussi des séquences éloignées. Ne pas oublier d'inclure la protéine d'intérêt P10415

Les séquences doivent être extraites au format FASTA. Pour cela, dans la page de réponse de BlastP, cocher les séquences que vous voulez conserver puis à la fin de la page, cliquer sur Get selected sequences. Dans la nouvelle page, choisir dans le menu Display FASTA (text). Sauvegarder les séquences dans un fichier texte.

  • Réaliser l'alignement multiple en utilisant le programme Clustal (Clustal Omega) sur le serveur d'Expasy d'Expasy . Sauvegarder cet alignement sur votre disque (sur la page de réponse, aller à Result files (text), cliquer sur le lien CLUSTALW, sauvegarder la page).

Analyser l'alignement en repérant notamment les régions conservées.

Recherche de motifs et de domaines dans les séquences

A partir de l'alignement multiple:

  • Etablissez un motif PROSITE correspondant à une zone conservée que vous espérez spécifique de la famille.

EXEMPLE d'un motif PROSITE : G-A-[ILV]-X-D. Dans les cas où l'acide aminé est strictement conservé dans toutes les séquences alignées, on fait figurer son code à une lettre. C'est le cas ici des acides aminés G,A et D. Quand à une même position de l'alignement, on observe plusieurs acides aminés, on les énumère entre crochets [ILV]. Si le nombre d'acides aminés différents est trop important, on remplace cette énumération par X qui veut dire n'importe quel acide aminé. Quand on recherchera ce motif dans une séquence, on retiendra comme occurrences GAIMD, GAIRD, GALMD, GAVKD, etc.

  • Quand vous avez établi votre motif, rechercher sa présence dans les séquences de SwissProt et TrEMBL (logiciel ScanProsite). D'après les résultats obtenus, pensez-vous qu'il est spécifique aux séquences de la famille à laquelle appartient votre protéine ?

Mise en application des TDs

Au laboratoire, vous êtes amenés a travailler sur la séquence ci-dessous:

>seq1

attggcaacctgaaagatctgaacattctgtatctgcatagcaacggctttaccggccgc attccgcgcgaaatgagcaacctgaccctggcgaacctgaccgatctggatctgagcggc aaccagctgaccggcaaaattccgcgcgattttgcggcgctgctgctggtgctgctggaa aaaaaaattgaaaacattacctgcgatagcatgaaactgctgagcaaaacctttctgatt ctgaccctgaccttttttttttttggcattgcgctggcgaaacagagctttgaaccggaa attgaagcgctgaaaagctttaaaaacggcattagcaacgatccgctgggcgtgctgagc gattggaccattattggcagcctgcgccattgcaactggaccggcattacctgcgatagc accggccatgtggtgagcgtgagcctgctggaaaaacagctggaaggcgtgctgagcccg gcgattgcgaacctgacctatctgcaggtgctggatctgaccagcaacagctttaccggc aaaattccggcggaaattggcaaactgaccgaactgaaccagctgattctgtatctgaac tattttagcggcagcattccgagcggcatttgggaactgaaaaacattttttatctggat ctgcgcaacaacctgctgagcggcgatgtgccggaagaaatttgcaaaaccagcagcctg gtgctgattggctttgattataacaacctgaccggcaaaattccggaatgcctgggcgat ctggtgcatctgcagatgtttgtggcggcgggcaaccatctgaccggcagcattccggtg agcattggcaccctggcgaacctgaccgatctggatctgagcggcaaccagctgaccggc aaaattccgcgcgattttggcaacctgctgaacctgcagagcctggtgctgaccgaaaac ctgctggaaggcgatattccggcggaaattggcaactgcagcagcctggtgcagctggaa ctgtatgataaccagctgaccggcaaaattccggcggaactgggcaacctggtgcagctg caggcgctgcgcatttataaaaacaaactgaccagcagcattccgagcagcctgtttcgc ctgacccagctgacccatctgggcctgagcgaaaaccatctggtgggcccgattagcgaa gaaattggctttctggaaagcctggaagtgctgaccctgcatagcaacaactttaccggc gaatttccgcagagcattaccaacctgcgcaacctgaccgtgctgaccgtgggctttaac aacattagcggcgaactgccggcggatctgggcctgctgaccaacctgcgcaacctgagc gcgcatgataacctgctgaccggcccgattccgagcagcattagcaactgcaccggcctg aaactgctggatctgagccataaccagatgaccggcgaaattccgcgcggctttggccgc atgaacctgacctttattagcattggccgcaaccattttaccggcgaaattccggatgat atttttaactgcagcaacctggaaaccctgagcgtggcggataacaacctgaccggcacc ctgaaaccgctgattggcaaactgcagaaactgcgcattctgcaggtgagctataacagc ctgaccggcccgattccgcgcgaaattggcaacctgaaagatctgaacattctgtatctg catagcaacggctttaccggccgcattccgcgcgaaatgagcaacctgaccctgctgcag ggcctgcgcatgtatagcaacgatctggaaggcccgattccggaagaaatgtttgatatg aaactgctgagcgtgctggatctgagcaacaacaaatttagcggccagattccggcgctg tttagcaaactggaaagcctgacctatctgagcctgcagggcaacaaatttaacggcagc attccggcgagcctgaaaagcctgagcctgctgaacacctttgatattagcgataacctg ctgaccggcaccattccgggcgaactgctggcgagcctgaaaaacatgcagctgtatctg aactttagcaacaacctgctgaccggcaccattccgaaagaactgggcaaactggaaatg gtgcaggaaattgatctgagcaacaacctgtttagcggcagcattccgcgcagcctgcag gcgtgcaaaaacgtgtttaccctggattttagccagaacaacctgagcggccatattccg gatgaagtgtttcagggcatggatatgattattagcctgaacctgagccgcaacagcttt agcggcgaaattccgcagagctttggcaacatgacccatctggtgagcctggatctgagc agcaacaacctgaccggcgaaattccggaaagcctggcgaacctgagcaccctgaaacat ctgaaactggcgagcaacaacctgaaaggccatgtgccggaaagcggcgtgtttaaaaac attaacgcgagcgatctgatgggcaacaccgatctgtgcggcagcaaaaaaccgctgaaa ccgtgcaccattaaacagaaaagcagccattttagcaaacgcacccgcgtgattctgatt attctgggcagcgcggcggcgctgctgctggtgctgctgctggtgctgattctgacctgc tgcaaaaaaaaagaaaaaaaaattgaaaacagcagcgaaagcagcctgccggatctggat agcgcgctgaaactgaaacgctttgaaccgaaagaactggaacaggcgaccgatagcttt aacagcgcgaacattattggcagcagcagcctgagcaccgtgtataaaggccagctggaa gatggcaccgtgattgcggtgaaagtgctgaacctgaaagaatttagcgcggaaagcgat aaatggttttataccgaagcgaaaaccctgagccagctgaaacatcgcaacctggtgaaa attctgggctttgcgtgggaaagcggcaaaaccaaagcgctggtgctgccgtttatggaa aacggcaacctggaagataccattcatggcagcgcggcgccgattggcagcctgctggaa aaaattgatctgtgcgtgcatattgcgagcggcattgattatctgcatagcggctatggc tttccgattgtgcattgcgatctgaaaccggcgaacattctgctggatagcgatcgcgtg gcgcatgtgagcgattttggcaccgcgcgcattctgggctttcgcgaagatggcagcacc accgcgagcaccagcgcgtttgaaggcaccattggctatctggcgccggaatttgcgtat atgcgcaaagtgaccaccaaagcggatgtgtttagctttggcattattatgatggaactg atgaccaaacagcgcccgaccagcctgaacgatgaagatagccaggatatgaccctgcgc cagctggtggaaaaaagcattggcaacggccgcaaaggcatggtgcgcgtgctggatatg gaactgggcgatagcattgtgagcctgaaacaggaagaagcgattgaagattttctgaaa ctgtgcctgttttgcaccagcagccgcccggaagatcgcccggatatgaacgaaattctg acccatctgatgaaactgcgcggcaaagcgaacagctttcgcgaagatcgcaacgaagat cgcgaagtg

Avec les outils utilisés au cours des différentes séances de TD, répondez aux questions suivantes:

  • cette séquence est-elle codante, si oui sur quelle phase de lecture
  • a quel organisme appartient cette séquence ?
  • quelle est le numéro d'accession de cette protéine, de l'ARNm, du gène ?
  • existe-il des orthologues a cette protéine ?
  • que veut dire db_xref=CDD:173623 sur la fiche GenPept?
  • quelle est la fonction putative de cette protéine ?

Sauvegardez la séquence de l'ARNm et du gène au format fasta

  • exite-t-il des domaines conservés dans cette protéine?
  • sans tenir compte des informations disponibles dans la fiche GenPep, identifiez le nombre d'introns/exons dans le gène codant cette protéine.